Gibbs States and Message Passing Algorithms in Random k-SAT and Graphical Models

Andrea Montanari

Stanford University

May 3, 2007

- Introduction
- 2 Pure state/cluster decomposition
- Relation with Bethe-Peierls approximation
- 4 Relation with correlation decay
- Message passing algorithms
- Conclusion

- Introduction
- 2 Pure state/cluster decomposition
- Relation with Bethe-Peierls approximation
- 4 Relation with correlation decay
- Message passing algorithms
- Conclusion

- Introduction
- 2 Pure state/cluster decomposition
- 3 Relation with Bethe-Peierls approximation
- 4 Relation with correlation decay
- Message passing algorithms
- Conclusion

- Introduction
- 2 Pure state/cluster decomposition
- 3 Relation with Bethe-Peierls approximation
- 4 Relation with correlation decay
- Message passing algorithms
- Conclusion

- Introduction
- 2 Pure state/cluster decomposition
- 3 Relation with Bethe-Peierls approximation
- 4 Relation with correlation decay
- Message passing algorithms
- 6 Conclusion

- Introduction
- 2 Pure state/cluster decomposition
- Relation with Bethe-Peierls approximation
- 4 Relation with correlation decay
- Message passing algorithms
- **6** Conclusion

Introduction

Structure of the presentation

Explore (some) interesting phenomena in random k-SAT

Infer general ideas (and some theorem) for a standard model

Ask whatever you want

Structure of the presentation

Explore (some) interesting phenomena in random k-SAT

Infer general ideas (and some theorem) for a standard model

Ask whatever you want

Structure of the presentation

Explore (some) interesting phenomena in random k-SAT

Infer general ideas (and some theorem) for a standard model

Ask whatever you want

Sources

On random k-SAT:

- ightarrow M. Mézard, G. Parisi, and R. Zecchina, 'Analytic and Algorithmic Solution of Random Satisfiability Problems', Science 2002
- \rightarrow A. Montanari, D. Shah, 'Counting good truth assignments of random k-SAT formulae', SODA 2007
- \rightarrow F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborova 'Gibbs States and the Set of Solutions of Random Constraint Satisfaction Problems', PNAS 2007

Formalization:

→ A. Dembo and A.Montanari, *In preparation* [DM07]

k-satisfiability

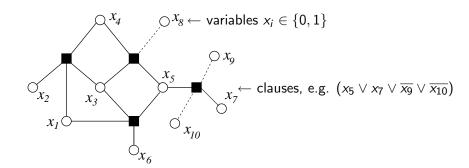
n variables:
$$\underline{x} = (x_1, x_2, \dots, x_n), x_i \in \{0, 1\}$$

m k-clauses

$$(x_1 \vee \overline{x_5} \vee x_7) \wedge (x_5 \vee x_8 \vee \overline{x_9}) \wedge \cdots \wedge (\overline{x_{66}} \vee \overline{x_{21}} \vee \overline{x_{32}})$$

Hereafter $k \ge 4$ (ask me why at the end)

Uniform measure over solutions



$$F = \cdots \wedge \underbrace{\left(x_{i_1(a)} \vee \overline{x}_{i_2(a)} \vee \cdots \vee x_{i_k(a)}\right)}_{a\text{-th clause}} \wedge \cdots$$

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{a=1}^{M} \psi_a(x_{i_1(a)}, \dots, x_{i_k(a)})$$

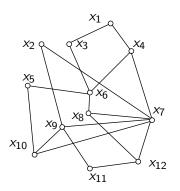
 $\mu(\underline{x}) \Leftrightarrow \text{Set of solutions } S$

Random k-satisfiability

Each clause is uniformly random among the $2^k \binom{n}{k}$ possible ones.

 $n, m \to \infty$ with $\alpha = m/n$ fixed.

'Standard model'



$$G = (V, E), V = [n], \underline{x} = (x_1, \dots, x_n), x_i \in \mathcal{X}$$

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij) \in G} \psi_{ij}(x_i, x_j).$$

1. G has bounded degree.

2. *G* has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

Not really fulfilled by random k-SAT but ...

1. G has bounded degree.

2. *G* has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

Not really fulfilled by random k-SAT but . . .

1. G has bounded degree.

2. *G* has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

Not really fulfilled by random k-SAT but . . .

1. G has bounded degree.

2. *G* has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

Not really fulfilled by random k-SAT but ...

Pure state/cluster decomposition

'Exponentially many clusters'

```
What does this mean?
[Mossel, Mézard/Palassini/Rivoire (2005), ......]
```

'Exponentially many clusters'

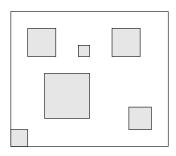
```
What does this mean? [Mossel, Mézard/Palassini/Rivoire (2005), . . . . . ]
```

A toy model: Random sub-cubes in $\{0,1\}^n$

[from an idea by Dimitris Achlioptas]

$$N = 2^{n\Sigma_0}$$
 clusters: $S = \bigcup_{a=1}^N S_a$

 $\{S_a\}$ iid cubes with 'centers' $\underline{x}^{(a)} \in \{0,1,*\}^n$:

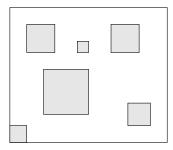


A toy model: Random sub-cubes in $\{0,1\}^n$

[from an idea by Dimitris Achlioptas]

$$N = 2^{n\Sigma_0}$$
 clusters: $S = \bigcup_{a=1}^{N} S_a$

 $\{S_a\}$ iid cubes with 'centers' $\underline{x}^{(a)} \in \{0,1,*\}^n$:

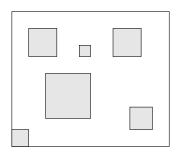


A toy model: Random sub-cubes in $\{0,1\}^n$

[from an idea by Dimitris Achlioptas]

$$N=2^{n\Sigma_0}$$
 clusters: $S=\cup_{a=1}^N S_a$

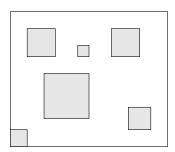
 $\{\mathcal{S}_{a}\}$ iid cubes with 'centers' $\underline{x}^{(a)} \in \{0,1,*\}^{n}$:



How shall I construct one cluster?

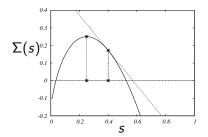
$$\mathcal{S}_{a} = \left\{ \underline{x} \in \{0,1\}^{n} : x_{i} = x_{i}^{(a)} \right\}$$

$$x_i^{(a)} = \begin{cases} * & \text{prob } p \text{ ,} \\ 1 & \text{prob } (1-p)/2 \text{ ,} \\ 0 & \text{prob } (1-p)/2 \text{ ,} \end{cases}$$



$$\#\{\text{clusters of size } 2^{ns}\} \doteq 2^{n\Sigma(s)}$$

 $\Sigma(s) = \Sigma_0 - D(s||p) \quad \text{if } \geq 0 \text{ and...}$

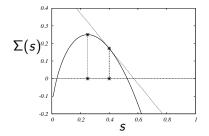


(d1RSB)

Most of solutions are in $2^{n\Sigma(s_*)}$ clusters of size 2^{ns_*} , $s_* > p$

$$\#\{\text{clusters of size } 2^{ns}\} \doteq 2^{n\Sigma(s)}$$

 $\Sigma(s) = \Sigma_0 - D(s||p) \quad \text{if } \geq 0 \text{ and...}$

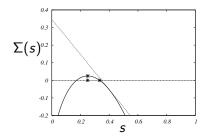


(d1RSB)

Most of solutions are in $2^{n\Sigma(s_*)}$ clusters of size 2^{ns_*} , $s_* > p$.

$$\#\{\text{clusters of size } 2^{ns}\} \doteq 2^{n\Sigma(s)}$$

 $\Sigma(s) = \Sigma_0 - D(s||p) \quad \text{if } \geq 0 \text{ and...}$

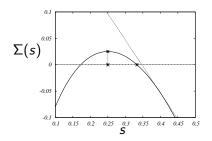


(1RSB)

Most of solutions are in $2^{o(n)}$ clusters of size $2^{ns_{ ext{max}}}$, $s_{ ext{max}} \in (p,s_*)$.

$$\#\{\text{clusters of size } 2^{ns}\} \doteq 2^{n\Sigma(s)}$$

 $\Sigma(s) = \Sigma_0 - D(s||p) \quad \text{if } \geq 0 \text{ and...}$

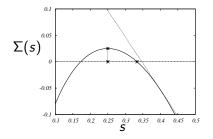


(1RSB)

Most of solutions are in $2^{o(n)}$ clusters of size $2^{ns_{ ext{max}}}$, $s_{ ext{max}} \in (p,s_*)$.

$$\#\{\text{clusters of size } 2^{ns}\} \doteq 2^{n\Sigma(s)}$$

 $\Sigma(s) = \Sigma_0 - D(s||p) \quad \text{if } \geq 0 \text{ and...}$

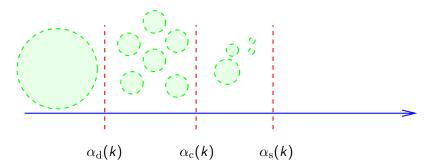


(1RSB)

Most of solutions are in $2^{o(n)}$ clusters of size $2^{ns_{\max}}$, $s_{\max} \in (p, s_*)$.

Enough with toys...

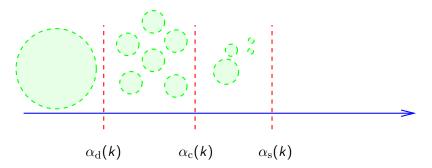
Pure states decomposition in k-SAT



[Biroli et al. 01, Mézard et al. 02, Mézard et al. 05, Achlioptas et al. 06, KMRSZ (us) 06]

The 3 scenarios seem universal (coloring, codes, ...

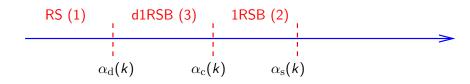
Pure states decomposition in k-SAT



[Biroli et al. 01, Mézard et al. 02, Mézard et al. 05, Achlioptas et al. 06, KMRSZ (us) 06]

The 3 scenarios seem universal (coloring, codes, ...)

Pure states decomposition in k-SAT

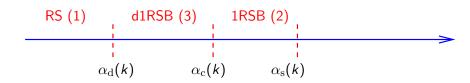


$$\alpha_{\rm d}(k) = (2^k \log k)/k + \dots$$
 $(\alpha_{\rm d}(4) \approx 9.38)$

$$\alpha_{\rm s}(k) = 2^k \log 2 - \frac{1}{2}(1 + \log 2) + \dots$$
 $(\alpha_{\rm s}(4) \approx 9.93)$

[Achlioptas, Naor, Peres, 2005, $\alpha_{\rm s}(k) = 2^k \log 2 + O(k)$

Pure states decomposition in *k*-SAT



$$\alpha_{\rm d}(k) = (2^k \log k)/k + \dots \qquad (\alpha_{\rm d}(4) \approx 9.38)$$

$$\alpha_{\rm c}(k) = 2^k \log 2 - \frac{3}{2} \log 2 + \dots$$
 $(\alpha_{\rm c}(4) \approx 9.547)$

$$\alpha_{\rm s}(k) = 2^k \log 2 - \frac{1}{2}(1 + \log 2) + \dots$$
 $(\alpha_{\rm s}(4) \approx 9.93)$

[Achlioptas, Naor, Peres, 2005, $\alpha_{\rm s}(k) = 2^k \log 2 + O(k)$]

Howx to formalize this in general?

Definition

It is the 'finer' partition $\Omega_1 \cup \cdots \cup \Omega_N = \mathcal{X}^n$, such that

$$\frac{\mu(\partial_{\epsilon}\Omega_q)}{(1-\mu(\Omega_q))\mu(\Omega_q)} \leq \exp\{-C(\epsilon)n\}.$$

where $C(\epsilon) > 0$ for ϵ small enough.

[the conductance of μ is exponentially small]

$$\mu(\,\cdot\,) = \sum_{q=1}^{N} w_q \mu_q(\,\cdot\,)\,.$$

Howx to formalize this in general?

Definition

It is the 'finer' partition $\Omega_1 \cup \cdots \cup \Omega_N = \mathcal{X}^n$, such that

$$\frac{\mu(\partial_{\epsilon}\Omega_q)}{(1-\mu(\Omega_q))\mu(\Omega_q)} \leq \exp\{-C(\epsilon)n\}.$$

where $C(\epsilon) > 0$ for ϵ small enough.

[the conductance of μ is exponentially small]

$$\mu(\,\cdot\,) = \sum_{q=1}^{N} w_q \mu_q(\,\cdot\,)\,.$$

Pure states: 3 scenarios

Let $N(\delta)$ the minimal number of states with measure $\geq 1-\delta$

[RS]
$$N(\delta) = 1$$

[d1RSB]
$$N(\delta) = e^{n(\Sigma \pm \varepsilon)}$$

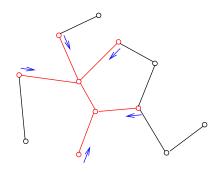
[1RSB]
$$N(\delta) = \Theta(1)$$
 [\rightarrow unbounded random variable]

Relation with Bethe-Peierls approximation

Bethe-Peierls 'approximation'

Definition

A 'set of messages' (aka cavity fields) is a collection $\{\nu_{i\rightarrow j}(\,\cdot\,)\}$ indexed by directed edges in G, where $\nu_{i\rightarrow j}(\,\cdot\,)$ is a distribution over \mathcal{X} .



Given $F \subseteq G$, $\operatorname{diam}(F) \le 2\ell$, such that $\deg_F(i) = \deg_G(i)$ or ≤ 1

$$\nu_F(\underline{x}_F) \equiv \frac{1}{W(\nu_F)} \prod_{(ij)\in F} \psi_{ij}(x_i, x_j) \prod_{i\in \partial F} \nu_{i\to j(i)}(x_i).$$

Bethe states

Definition

A probability distribution ρ on \mathcal{X}^V is an (ε, r) Bethe state, if there exists a set of messages $\{\nu_{i \to j}(\,\cdot\,)\}$ such that, for any $F \subseteq G$ with $\operatorname{diam}(F) \leq 2r$

$$||\rho_F - \nu_F||_{TV} \le \varepsilon$$
.

Consistency Condition → Bethe Equations

Proposition (DM07)

If ρ is a $(\varepsilon, 2)$ -Bethe state with respect to the message set $\{\nu_{i\to j}(\,\cdot\,)\}$, then, for any $i\to j$

$$||\nu_{i\to j} - \mathrm{T}\nu_{i\to j}||_{TV} \le C\varepsilon,$$

$$\mathrm{T}\nu_{i\to j}(x_i) = \frac{1}{z_{i\to j}} \prod_{l\in\partial i\setminus j} \sum_{x_l} \psi_{il}(x_i, x_l)\nu_{l\to i}(x_l).$$

For t = 0, 1, ...

$$\nu_{i \to i}^{(t+1)} = \mathrm{T}\nu_{i \to i}^{(t)}$$

Consistency Condition → Bethe Equations

Proposition (DM07)

If ρ is a $(\varepsilon, 2)$ -Bethe state with respect to the message set $\{\nu_{i\to j}(\,\cdot\,)\}$, then, for any $i\to j$

$$||\nu_{i\to j} - \mathrm{T}\nu_{i\to j}||_{TV} \le C\varepsilon,$$

$$\mathrm{T}\nu_{i\to j}(x_i) = \frac{1}{z_{i\to j}} \prod_{l\in\partial i\setminus j} \sum_{x_l} \psi_{il}(x_i, x_l)\nu_{l\to i}(x_l).$$

Belief Propagation

For t = 0, 1, ...

$$\nu_{i\to j}^{(t+1)} = \mathrm{T}\nu_{i\to j}^{(t)}$$

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij) \in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

(RS) $\mu(\cdot)$ is a Bethe state and cannot be further decomposed.

(1RSB) $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states (\leftrightarrow clusters).

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij) \in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

(RS) $\mu(\cdot)$ is a Bethe state and cannot be further decomposed.

(1RSB) $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states (\leftrightarrow clusters).

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij) \in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

(RS) $\mu(\cdot)$ is a Bethe state and cannot be further decomposed.

(1RSB) $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states (\leftrightarrow clusters).

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij) \in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

(RS) $\mu(\cdot)$ is a Bethe state and cannot be further decomposed.

(1RSB) $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states (\leftrightarrow clusters).

Relation with correlation decay: Notation

- $i \in \{1, ..., N\}$ uniformly at random.
- B(i, r) ball of radius r and center i.
- $x_{\sim i,r} = \{ x_j : j \notin B(i,r) \}.$

Relation with correlation decay: Definitions

Uniqueness:

$$\sup_{x,x'}\sum_{x_i}\left|\mu(x_i|x_{\sim i,r})-\mu(x_i|x_{\sim i,r}')\right|\to 0$$

[cf. Tatikonda, Gamarnik, Bayati,...]

Extremality:

$$\sum_{\mathsf{x}_i,\mathsf{x}_{\sim i}} |\mu(\mathsf{x}_i,\mathsf{x}_{\sim i,r}) - \mu(\mathsf{x}_i)\mu(\mathsf{x}_{\sim i,r})| \to 0$$

[cf. Peres, Mossel]

Concentration:

$$\sum_{x_{i(1)},...,x_{i(k)}} |\mu(x_{i(1)},...,x_{i(k)}) - \mu(x_{i(1)}) \cdots \mu(x_{i(k)})| \to 0$$

$RS \Leftrightarrow Extremality$

d1RSB ⇔ No extremality; Concentration

1RSB ⇔ No extremality; No concentration

 $RS \Leftrightarrow Extremality$

d1RSB ⇔ No extremality; Concentration

1RSB ⇔ No extremality; No concentration

 $RS \Leftrightarrow Extremality$

d1RSB ⇔ No extremality; Concentration

1RSB ⇔ No extremality; No concentration

 $RS \Leftrightarrow Extremality$

d1RSB ⇔ No extremality; Concentration

1RSB ⇔ No extremality; No concentration

First steps

Theorem (Tatikonda-Jordan 02)

If μ is unique 'with rate $\delta(\cdot)$ ' then it is an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \ge C\delta(\ell - r)$, with respect to the message set output by belief propagation.

Theorem (DM07)

If μ is extremal 'with rate $\delta(\cdot)$ ' then it is an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \geq C\delta(\ell - r)$.

First steps

Theorem (Tatikonda-Jordan 02)

If μ is unique 'with rate $\delta(\cdot)$ ' then it is an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \ge C\delta(\ell - r)$, with respect to the message set output by belief propagation.

Theorem (DM07)

If μ is extremal 'with rate $\delta(\cdot)$ ' then it is an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \geq C\delta(\ell - r)$.

What happens in k-SAT?

RS (1) d1RSB (3) 1RSB (2)
$$\alpha_{\rm u}(k)$$
 $\alpha_{\rm d}(k)$ $\alpha_{\rm c}(k)$ $\alpha_{\rm s}(k)$

$$\begin{split} &\alpha_{\rm u}(k) = (2\log k)/k + \dots & \text{[rigorous!, MS07]} \\ &\alpha_{\rm d}(k) = (2^k \log k)/k + \dots & (\alpha_{\rm d}(4) \approx 9.38) \\ &\alpha_{\rm c}(k) = 2^k \log 2 - \frac{3}{2}\log 2 + \dots & (\alpha_{\rm c}(4) \approx 9.547) \\ &\alpha_{\rm s}(k) = 2^k \log 2 - \frac{1}{2}(1 + \log 2) + \dots & (\alpha_{\rm s}(4) \approx 9.93) \end{split}$$

Message passing algorithms

Implications

BP can work in the RS and d1RSB regimes.

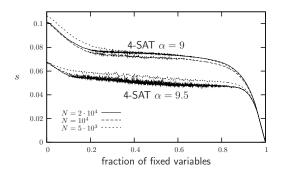
BP <u>cannot</u> work in the 1RSB regime

Implications

BP can work in the RS and d1RSB regimes.

BP cannot work in the 1RSB regime.

Sequential BP search



Finds a solution with positive probability for $\alpha < \alpha_c(k)$.

Conclusion

• Many (difficult!) open problems.

• Theory of Gibbs measures (locally Markov processes) on (a class of) *finite* graphs.